p38 MAPK Activation by NGF in Primary Sensory Neurons after Inflammation Increases TRPV1 Levels and Maintains Heat Hyperalgesia

نویسندگان

  • Ru-Rong Ji
  • Tarek A. Samad
  • Shan-Xue Jin
  • Raymond Schmoll
  • Clifford J. Woolf
چکیده

Peripheral inflammation induces p38 MAPK activation in the soma of C fiber nociceptors in the dorsal root ganglion (DRG) after 24 hr. Inflammation also increases protein, but not mRNA levels, of the heat-gated ion channel TRPV1 (VR1) in these cells, which is then transported to peripheral but not central C fiber terminals. Inhibiting p38 activation in the DRG reduces the increase in TRPV1 in the DRG and inflamed skin and diminishes inflammation-induced heat hypersensitivity without affecting inflammatory swelling or basal pain sensitivity. p38 activation in the DRG is secondary to peripheral production of NGF during inflammation and is required for NGF-induced increases in TRPV1. The activation of p38 in the DRG following retrograde NGF transport, by increasing TRPV1 levels in nociceptor peripheral terminals in a transcription-independent fashion, contributes to the maintenance of inflammatory heat hypersensitivity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury.

Cold hyperalgesia is a well-documented symptom of inflammatory and neuropathic pain; however, the underlying mechanisms of this enhanced sensitivity to cold are poorly understood. A subset of transient receptor potential (TRP) channels mediates thermosensation and is expressed in sensory tissues, such as nociceptors and skin. Here we report that the pharmacological blockade of TRPA1 in primary ...

متن کامل

Peripherally increased artemin is a key regulator of TRPA1/V1 expression in primary afferent neurons

BACKGROUND Artemin, a member of the glial cell line-derived neurotrophic factor family, is known to have a variety of neuronal functions, and has been the subject of attention because it has interesting effects, including bi-directional results in modulation in neuropathic and inflammatory pain. It has been shown that the overexpression of artemin is associated with an increase in the expressio...

متن کامل

The ubiquitin ligase MYCBP2 regulates transient receptor potential vanilloid receptor 1 (TRPV1) internalization through inhibition of p38 MAPK signaling.

The E3 ubiquitin ligase MYCBP2 negatively regulates neuronal growth, synaptogenesis, and synaptic strength. More recently it was shown that MYCBP2 is also involved in receptor and ion channel internalization. We found that mice with a MYCBP2-deficiency in peripheral sensory neurons show prolonged thermal hyperalgesia. Loss of MYCBP2 constitutively activated p38 MAPK and increased expression of ...

متن کامل

Phosphatidylinositol 3-kinase activates ERK in primary sensory neurons and mediates inflammatory heat hyperalgesia through TRPV1 sensitization.

Although the PI3K (phosphatidylinositol 3-kinase) pathway typically regulates cell growth and survival, increasing evidence indicates the involvement of this pathway in neural plasticity. It is unknown whether the PI3K pathway can mediate pain hypersensitivity. Intradermal injection of capsaicin and NGF produce heat hyperalgesia by activating their respective TRPV1 (transient receptor potential...

متن کامل

Nerve growth factor enhances cough and airway obstruction via TrkA receptor- and TRPV1-dependent mechanisms.

BACKGROUND Nerve growth factor (NGF) is an important mediator of airway hyper-responsiveness and hyperalgesia but its role in cough is unknown. OBJECTIVES In this study the effects of NGF on the cough reflex and airway calibre were investigated in guinea pigs. The involvement of the tropomyosin-related kinase A (TrkA) receptor and transient receptor potential vanilloid-1 (TRPV1), and the p38 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2002